答案優(yōu)選課程與教學(xué)論(9人)課程與教學(xué)論(數(shù)學(xué))專業(yè)自1982年開(kāi)始招生。主要研究方向有數(shù)學(xué)課程與教學(xué)論、數(shù)學(xué)學(xué)習(xí)心理研究、數(shù)學(xué)建模與數(shù)學(xué)教育、數(shù)學(xué)方法論、數(shù)學(xué)教育史。該專業(yè)曾經(jīng)承擔(dān)國(guó)家級(jí)高中骨干數(shù)學(xué)教師的培訓(xùn)任務(wù);作為主要單位之一,參加了國(guó)家高中和初中數(shù)學(xué)課程標(biāo)準(zhǔn)的制定工作;正在主持兩項(xiàng)教育部的國(guó)家教育“十五”規(guī)劃項(xiàng)目;參加了多部中學(xué)數(shù)學(xué)教材的主編和編寫(xiě)工作。基礎(chǔ)數(shù)學(xué)(30人)基礎(chǔ)數(shù)學(xué)是北京市重點(diǎn)學(xué)科,1996年獲得博士學(xué)位授權(quán)。主要研究方向有:有限群表示、群與圖、Kac-Moody代數(shù)、Hopf代數(shù)、多復(fù)變函數(shù)中核函數(shù)的表示、復(fù)結(jié)構(gòu)的模空間、全純域、復(fù)流形上的幾何與分析、調(diào)和分析、李群上的分析及其特殊函數(shù)、奇異積分、多元周期函數(shù)通過(guò)小波表現(xiàn)及逼近問(wèn)題、常微分方程與動(dòng)力系統(tǒng)、非線性泛函分析及應(yīng)用、多元線性算子的保形逼近、完全分配格、Domain理論、集論拓?fù)浜蜔o(wú)限組合論、拓?fù)洳粍?dòng)點(diǎn)理論、辛幾何、正曲率流形的幾何與拓?fù)涞?。?yīng)用數(shù)學(xué)(22人)應(yīng)用數(shù)學(xué)是北京市重點(diǎn)建設(shè)學(xué)科,主要研究方向有:物理中的數(shù)學(xué)問(wèn)題、量子信息與量子計(jì)算、偏微分方程及其應(yīng)用、運(yùn)籌控制等。物理中的數(shù)學(xué)問(wèn)題方向主要研究:1.量子規(guī)范場(chǎng)論的拓?fù)湫再|(zhì)研究。2.量子場(chǎng)論中無(wú)限維對(duì)稱性的研究。3.量子群、量子代數(shù)、Yang-Baxter方程的研究。量子信息與量子計(jì)算是用量子力學(xué)中概念對(duì)信息處理、計(jì)算方法提出的一個(gè)新的研究領(lǐng)域,是屬于物理學(xué)、數(shù)學(xué)、信息理論和計(jì)算方法的交叉研究。偏微分方程及其應(yīng)用方向主要研究幾大類非線性偏微分方程,特別是一些帶交錯(cuò)擴(kuò)散的擬線性反應(yīng)擴(kuò)散方程組、拋物雙曲耦合方程組的行波解、平衡解的存在性、穩(wěn)定性及解的漸近性,Euler型方程解的適定性及一些橢圓型方程的多解性問(wèn)題的理論研究及數(shù)值計(jì)算。運(yùn)籌控制方向主要研究非線性最優(yōu)化理論及其應(yīng)用。計(jì)算數(shù)學(xué)(7人)本專業(yè)是學(xué)校重點(diǎn)建設(shè)學(xué)科,主要的研究方向有:計(jì)算流體力學(xué)、偏微分方程數(shù)值解、有限元方法、有限體積方法、特征值問(wèn)題、并行計(jì)算、多維守恒律方程組的數(shù)值方法和數(shù)值模擬、數(shù)值逼近和數(shù)值代數(shù)、最優(yōu)化理論和算法、計(jì)算機(jī)軟件的設(shè)計(jì)和應(yīng)用、計(jì)算科學(xué)在圖像、天體物理材料科學(xué)和工程中的應(yīng)用等。
首都師范大學(xué)2016年小學(xué)教育,所學(xué)課程有哪些
文中圖片素材來(lái)源網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系644062549@qq.com刪除
轉(zhuǎn)載注明出處:http://www.haoleitv.com