必修二數(shù)學(xué)知識(shí)點(diǎn)歸納


大部分同學(xué)對(duì)于高中數(shù)學(xué)來(lái)說(shuō)感覺(jué)非常困難,因?yàn)楦咧械闹R(shí)相對(duì)初中來(lái)要難很多,尤其是高中數(shù)學(xué)必修二當(dāng)中需要記憶的知識(shí)點(diǎn)原理也特別多,那么怎么才能學(xué)好高中數(shù)學(xué)呢?接下來(lái)有掌門(mén)學(xué)堂小編給大家?guī)?lái)高中數(shù)學(xué)必修兒知識(shí)點(diǎn)歸納的詳細(xì)內(nèi)容,一起跟隨小編來(lái)看看吧。

必修二數(shù)學(xué)知識(shí)點(diǎn)歸納

必修二數(shù)學(xué)知識(shí)點(diǎn)歸納

必修二數(shù)學(xué)知識(shí)點(diǎn)歸納

定理總結(jié)

必修二數(shù)學(xué)知識(shí)點(diǎn)歸納

公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個(gè)平面內(nèi)。公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線。公理3:過(guò)不在同一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。

推論1:經(jīng)過(guò)一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面。

推論2:經(jīng)過(guò)兩條相交直線,有且只有一個(gè)平面。

推論3:經(jīng)過(guò)兩條平行直線,有且只有一個(gè)平面。

公理4:平行于同一條直線的兩條直線互相平行。

等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等。

空間兩直線的位置關(guān)系

空間兩條直線只有三種位置關(guān)系:平行、相交、異面

按是否共面可分為兩類(lèi):

共面:平行、相交

異面:

異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面

直線和平面的位置關(guān)系:

直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

直線和平面相交——有且只有一個(gè)公共點(diǎn)

直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

空間向量法(找平面的法向量)

規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角

由此得直線和平面所成角的取值范圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒(méi)有公共點(diǎn)

直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

兩個(gè)平面的位置關(guān)系

兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)

兩個(gè)平面的位置關(guān)系:

兩個(gè)平面平行-----沒(méi)有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線。

平行

兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。

相交、二面角

半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

二面角的棱:這一條直線叫做二面角的棱。

二面角的面:這兩個(gè)半平面叫做二面角的面。

二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

直二面角:平面角是直角的二面角叫做直二面角。

高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直

兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)

多面體

棱柱

棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚€(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

棱柱的性質(zhì)

側(cè)棱都相等,側(cè)面是平行四邊形

兩個(gè)底面與平行于底面的截面是全等的多邊形

過(guò)不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形

棱錐

棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質(zhì):

側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

正棱錐

正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質(zhì):

各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

多個(gè)特殊的直角三角形

相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

以上是由掌門(mén)學(xué)堂小編為大家?guī)?lái)的高中數(shù)學(xué)必修二知識(shí)點(diǎn)歸納,希望對(duì)大家有所幫助。其實(shí)數(shù)學(xué)是最好得分的科目,同時(shí)又是高考成敗的關(guān)鍵,很多學(xué)生因?yàn)閿?shù)學(xué)成績(jī)而走向不同的大學(xué),如果弄不懂相關(guān)知識(shí)內(nèi)容在很大程度上會(huì)影響初三復(fù)習(xí)的進(jìn)度,因此高一高二的基礎(chǔ)的是非常重要的。

網(wǎng)上報(bào)名
  • 姓名:
  • 專(zhuān)業(yè):
  • 層次: 分?jǐn)?shù):
  • 電話:
  • QQ/微信:
  • 地址:

文中圖片素材來(lái)源網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系644062549@qq.com刪除

提交報(bào)名同學(xué)/家長(zhǎng):允許擇校老師幫您擇校調(diào)劑,同意《隱私保障》條例,并允許推薦給更多服務(wù)商為您提供服務(wù)!

轉(zhuǎn)載注明出處:http://www.haoleitv.com